Clustering Using Objective Functions and Stochastic Search
نویسندگان
چکیده
A new approach to clustering multivariate data, based on a multi-level linear mixed model, is proposed. A key feature of the model is that observations from the same cluster are correlated, because they share cluster specific random effects. The inclusion of cluster specific random effects allows parsimonious departure from an assumed base model for cluster mean profiles. This departure is captured statistically via the posterior expectation, or best linear unbiased predictor. One of the parameters in the model is the true, underlying partition of the data, and the posterior distribution of this parameter, which is known up to a normalizing constant, is used to cluster the data. The problem of finding partitions with high posterior probability is not amenable to deterministic methods such as the EM algorithm. Thus, we propose a stochastic search algorithm driven by a Markov chain that is a mixture of two Metropolis-Hastings algorithms one that makes small-scale changes to individual objects and another that performs large-scale moves involving entire clusters. The proposed methodology is fundamentally different from the well-known finite mixture model approach to clustering, which does not explicitly include the partition as a parameter, and involves an independent and identically distributed structure.
منابع مشابه
Using a new modified harmony search algorithm to solve multi-objective reactive power dispatch in deterministic and stochastic models
The optimal reactive power dispatch (ORPD) is a very important problem aspect of power system planning and is a highly nonlinear, non-convex optimization problem because consist of both continuous and discrete control variables. Since the power system has inherent uncertainty, hereby, this paper presents both of the deterministic and stochastic models for ORPD problem in multi objective and sin...
متن کاملOptimal Operation Management of Grid-connected Microgrid Using Multi-Objective Group Search Optimization Algorithm
Utilizing distributed generations (DGs) near load points has introduced the concept of microgrid. However, stochastic nature of wind and solar power generation as well as electricity load makes it necessary to utilize an energy management system (EMS) to manage hourly power of microgrid and optimally supply the demand. As a result, this paper utilizes demand response program (DRP) and battery t...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملSolving a Stochastic Cellular Manufacturing Model by Using Genetic Algorithms
This paper presents a mathematical model for designing cellular manufacturing systems (CMSs) solved by genetic algorithms. This model assumes a dynamic production, a stochastic demand, routing flexibility, and machine flexibility. CMS is an application of group technology (GT) for clustering parts and machines by means of their operational and / or apparent form similarity in different aspects ...
متن کاملImproved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملMulti-choice stochastic bi-level programming problem in cooperative nature via fuzzy programming approach
In this paper, a Multi-Choice Stochastic Bi-Level Programming Problem (MCSBLPP) is considered where all the parameters of constraints are followed by normal distribution. The cost coefficients of the objective functions are multi-choice types. At first, all the probabilistic constraints are transformed into deterministic constraints using stochastic programming approach. Further, a general tran...
متن کامل